Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-894264

ABSTRACT

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Subject(s)
Epithelial Cells/drug effects , SARS-CoV-2/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Amitriptyline/pharmacology , Animals , Antidepressive Agents/pharmacology , Ceramides/antagonists & inhibitors , Ceramides/metabolism , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Neutral Ceramidase/pharmacology , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Vesicular stomatitis Indiana virus/genetics
2.
J Biol Chem ; 295(45): 15174-15182, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-759661

ABSTRACT

Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Sphingosine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Protein Binding , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL